资源类型

期刊论文 1914

会议视频 42

会议信息 2

年份

2024 3

2023 87

2022 147

2021 141

2020 106

2019 124

2018 115

2017 100

2016 74

2015 100

2014 92

2013 83

2012 92

2011 92

2010 91

2009 74

2008 104

2007 107

2006 42

2005 27

展开 ︾

关键词

风险分析 9

能源 8

数值模拟 7

颠覆性技术 5

分析 4

可持续发展 4

对策 4

影响因素 4

智能制造 4

机器学习 4

碳中和 4

隧道 4

ANSYS 3

人工智能 3

农业科学 3

冶金 3

抗击疫情 3

数值分析 3

环境 3

展开 ︾

检索范围:

排序: 展示方式:

End-of-life batteries management and material flow analysis in South Korea

Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun

《环境科学与工程前沿(英文)》 2018年 第12卷 第3期 doi: 10.1007/s11783-018-1019-x

摘要: Consumers increasingly have worn-out batteries as electrical and electronic equipment with new technical developments are introduced into the market and quickly replace older models. As a result, large amounts of end-of-life (EOL) or waste batteries are generated. Such batteries may contain a variety of materials that includes valuable resources as well as toxic elements. Thus, the proper recycling and management of batteries is very important from the perspective of resource conservation and environmental effect. The collection and recycling of EOL batteries is relatively low in South Korea compared to other countries, although an extended producer responsibility (EPR) policy was adopted for battery recycling in 2003. In this study, the management and material flow of EOL batteries is presented to determine potential problems and quantitative flow, based on literature review, site visits to battery recycling facilities, and interviews with experts in the Korea Battery Recycling Association (KBRA), manufacturers, and regulators in government. The results show that approximately 558 tons of manganese-alkaline batteries, the largest fraction among recycling target items, was disposed in landfills or incinerators in 2015, while approximately 2,000 tons of batteries were recovered at a recycling facility by simple sorting and crushing processes. By raising environmental awareness, more diverse and effective collection systems could be established for consumers to easily dispose of EOL batteries in many places. Producers, retailers and distributors in South Korea should also play an important role in the collection of EOL batteries from consumers. Lithium-ion batteries from many electronic devices must be included in the EPR system for resource recovery.

关键词: End-of-life battery     Recycling     Material flow analysis (MFA)     Extended producer responsibility (EPR)     Resource recovery    

Sustainable design of sanitation system based on material and value flow analysis for urban slum in Indonesia

Ken USHIJIMA, Mitsuteru IRIE, Neni SINTAWARDANI, Jovita TRIASTUTI, Umi HAMIDAH, Tadaharu ISHIKAWA, Naoyuki FUNAMIZU

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 120-126 doi: 10.1007/s11783-012-0460-5

摘要: Material flow analysis (MFA) and value flow analysis (VFA) were applied to the sanitation system in an urban slum in Indonesia. Based on the results of the MFA and VFA, garbage and excreta disposal costs were evaluated to be 0.7% and 1.1%, respectively, of per capita income. Such value flows seem reasonable in light of the recognized affordability to pay (ATP) standard. However, current excreta disposal methods create negative impacts on downstream populations. Because such disadvantages do not go back to disposers, but passed to downstream, the current value flow structure does not motivate individual toilet users to install treatment facility. Based on current material and value flow structures, a resource recycling sanitation system scenario was examined. Based on VFA, an affordable initial cost for such a system was calculated; this was found to be comparable in price to a cheaper composting toilet that is currently available in the market.

关键词: material flow     value flow     resource recycling system     sustainable design     initial cost     urban slum    

Sinks of steel in China–addition to in-use stock, export and loss

Hua GUO,Tianzhu ZHANG

《环境科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 141-149 doi: 10.1007/s11783-014-0696-3

摘要: China has become the largest producer of crude steel in the world since 1996, which places the country under huge pressure in terms of resources, energy, and the environment. Examining the driver of steel demand is of great significance to the structural adjustment and sustainable development of the steel industry. The researchers calculate the steel demand in China from 2000 to 2009 based on three sinks (steel stock, export, and loss) by taking the four stages of steel life cycle (production, fabrication and manufacturing, use, and waste management and recycling) as the study object. The researchers conclude that addition to in-use stock is the main driver of steel demand and that the 10-year average addition to in-use stock accounted for 77% of the steel sinks, in which 55% of the addition occurs in the building sector, and the steel for this segment is of low strength with large consumption. Based on the analysis of existing policies, the researchers propose that the steel demand structure will develop toward diversification and that the building sector will realize the upgrade of products as soon as possible to improve construction quality. Under the pressure of rising cost for imported resources, the export ratio of steel products should be controlled appropriately. Thus, recycling economy should be developed to reduce steel losses.

关键词: steel demand     driver     Material Flow Analysis (MFA)     Substance Flow Analysis (SFA)     addition to in-use stock     steel policy    

The Building of Papermaking Enterprise’s Recycling Economy Evaluation Index System Based on Value FlowAnalysis

Zhi-fang Zhou,Jing Ou,Sha-sha Wang,Xiao-hong Chen

《工程管理前沿(英文)》 2016年 第3卷 第1期   页码 9-17 doi: 10.15302/J-FEM-2016009

摘要: At present, the research on circular economy has made a lot of substantive results both at home and abroad. But for the papermaking enterprise, which is the representative of the light industry, few studies have analyzed the evaluation index system of circular economy. Since the current material flow analyses have limitations that the researchers cannot calculate materials with different units. The authors take advantage of the intrinsic correlation between the basic principle of value flow analysis and circular economy, and then analyze the dynamic changes of material flow and value flow through enterprises internal production process. Considering the resource output, the authors set up the layered structure of the evaluation index system, and then preliminarily determine the index form. Next, the authors use the frequency statistics analysis method to adjust indicators, forming a preliminary index system. After that, the principal component analysis and independent analysis are applied for screening. Finally, the authors build a circular economy evaluation index system for papermaking enterprise to provide scientific guidance for the process of circular economy.

关键词: circular economy     the papermaking enterprise     material flow analysis     value flow analysis     evaluation index system    

Win-Win: Anthropogenic circularity for metal criticality and carbon neutrality

《环境科学与工程前沿(英文)》 2023年 第17卷 第2期 doi: 10.1007/s11783-023-1623-2

摘要:

● Anthropogenic circularity science is an emerging interdisciplinary field.

关键词: Anthropogenic circularity     Material flow analysis     Criticality     Carbon neutrality     Solid waste     Circular economy    

Spatiotemporal evolution and driving factors for GHG emissions of aluminum industry in China

《能源前沿(英文)》 2023年 第17卷 第2期   页码 294-305 doi: 10.1007/s11708-022-0819-7

摘要: China’s aluminum (Al) production has released a huge amount of greenhouse gas (GHG) emissions. As one of the biggest country of primary Al production, China must mitigate its overall GHG emission from its Al industry so that the national carbon neutrality target can be achieved. Under such a background, the study described in this paper conducts a dynamic material flow analysis to reveal the spatiotemporal evolution features of Al flows in China from 2000 to 2020. Decomposition analysis is also performed to uncover the driving factors of GHG emission generated from the Al industry. The major findings include the fact that China’s primary Al production center has transferred to the western region; the primary Al smelting and carbon anode consumption are the most carbon-intensive processes in the Al life cycle; the accumulative GHG emission from electricity accounts for 78.14% of the total GHG emission generated from the Al industry; China’s current Al recycling ratio is low although the corresponding GHG emission can be reduced by 93.73% if all the primary Al can be replaced by secondary Al; and the total GHG emission can be reduced by 88.58% if major primary Al manufacturing firms are transferred from Inner Mongolia to Yunnan. Based upon these findings and considering regional disparity, several policy implications are proposed, including promotion of secondary Al production, support of clean electricity penetration, and relocation of the Al industry.

关键词: aluminum     material flow analysis     GHG (greenhouse gas) emissions     LMDI (logarithmic mean divisa index)    

Clustering economic sectors in China on a life cycle basis to achieve environmental sustainability

Sai LIANG, Tianzhu ZHANG, Xiaoping JIA

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 97-108 doi: 10.1007/s11783-012-0402-2

摘要: To improve material efficiency, industrial structure optimization becomes a focal point in Chinese industrial and environmental policies. It is crucial to cluster economic sectors and determine their priority for industrial and environmental policy implementation. Integrating a set of criteria, a hybrid input-output model and the hierarchical cluster analysis, this study clusters China’s economic sectors and determines their priority on a life cycle basis. China’s economic sectors are clustered into three clusters. Industrial structure changes (industrial policy) should encourage the development of sectors in cluster 1 and limit the development of sectors in cluster 2. Technology development and materials recycling (two environmental policies) should mainly focus on sectors in clusters 1 and 2. Future industrial policies in China should limit the development of two sectors named and . Instead of limiting some industries by command-and-control, the best policy option is to remedy environmental standards and law enforcement. Enterprises belonging to the identified key sectors from the viewpoint of direct production impacts should be concerned to achieve enterprise sustainability. To achieve sustainable production chains, the identified key sectors from the viewpoint of accumulative production impacts should be concerned. For sustainable consumption, the identified key sectors from the viewpoint of consumption impacts should be concerned to transform consumption styles. Most of environmental pressure can be alleviated not only by technical improvements and material recycling, but also by the development of economic sectors in cluster 1.

关键词: cluster analysis     input-output model     life cycle     material flow analysis     sustainable development    

物质流分析的跟踪观察法

陆钟武

《中国工程科学》 2006年 第8卷 第1期   页码 18-25

摘要:

流动,是物质(如铜、铝等)流动和流体流动二者所具有的基本特征,基于这个论点,简要地回顾了流体力学中研究流体流动的两种方法,即拉格朗日法和欧拉法;相应地提出了物质流分析的两种方法,即跟踪观察法和定点观察法。由于前者在文献中未见报道,因此对它进行了重点说明。强调了物质流的跟踪观察法既适用于稳态物质流(产品产量不变),也适用于非稳态物质流(产品产量增长或下降)。以钢铁产品生命周期的铁流图为例,说明了物质流的跟踪模型。在引入了物质流的非稳度后,提出了物质流各项指标的计算式,以及它们之间的相互关系。以瑞典铅酸电池系统为对象,计算了其中铅流的各项指标,并进行了必要的分析。

关键词: 物质流的研究方法     物质流的跟踪观察法     物质流的基本公式     物质流的非稳度    

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

《能源前沿(英文)》 2017年 第11卷 第3期   页码 401-409 doi: 10.1007/s11708-017-0496-0

摘要: As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH) nanoparticles as the cathode material, nano-sized β-Ni(OH) particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH) was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH) could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH) was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated using X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH) and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

关键词: nano-suspension flow battery     β-Ni(OH)2     scanning electronic microscopy (SEM)     X-ray diffraction (XRD)     X-ray adsorption near edge structure (XANES)     extended X-ray absorption fine structure (EXAFS)    

Theoretical analysis and experimental investigation of valveless piezoelectric pump with unsymmetrical

ZHANG Jianhui, LU Jizhuang, XIA Qixiao, LI Hong

《机械工程前沿(英文)》 2007年 第2卷 第1期   页码 13-19 doi: 10.1007/s11465-007-0002-1

摘要: A novel valveless piezoelectric pump with unsymmetrical ridges is presented at first. It ingeniously utilizes the inner space of its chamber by developing its chamber bottom into unsymmetrical ridges along the direction of the inlet and outlet of the pump. Hence, a series of cuneiform channels are asymmetrically and alternately formed between the unsymmetrical ridges and the piezoelectric vibrator, which enables the pump to form a one-way flow instead of the function of the traditional diffuse or nozzle elements fitted outside the chamber. Then, by analyzing the vibration of the piezoelectric vibrator, the vibration deformation function and the equation of volume change are established. Meanwhile, the theoretical equation of the pump flow rate is established. Finally, a real valveless piezoelectric pump with unsymmetrical ridges is manufactured, and the flow rate of the pump is measured through experiments. It is proved that the theory is rational and correct by comparing the experimental flow rate and the theoretical flow rate. In addition, for calculating the theoretical flow rate, the positive and converse flow resistance coefficients of unsymmetrical ridges are measured through experiments, when one slope angle of the unsymmetrical ridges is 90º and another is changing from 20º to 60º, respectively.

关键词: unsymmetrical     theoretical flow     theoretical equation     pump flow     converse flow    

Improvement potential of today’s WEEE recycling performance: The case of LCD TVs in Belgium

Paul Vanegas, Jef R. Peeters, Dirk Cattrysse, Wim Dewulf, Joost R. Duflou

《环境科学与工程前沿(英文)》 2017年 第11卷 第5期 doi: 10.1007/s11783-017-1000-0

摘要: Waste of electrical and electronic equipment (WEEE) constitutes one of the most relevant waste streams because of the quantity and presence of valuable materials. However, there is limited knowledge on the resource potential of urban mining WEEE, as data on material composition, and the efficiency of current recycling treatments are still scarce. In this article, an evaluation of the recycling performance at a national level for one of the fastest growing e-waste streams: LCD TVs is carried out through the following four steps. Firstly, material characterisation is performed by means of sampling of the waste stream. Secondly, a material flow analysis is conducted by evaluating the separation performance of a recycling plant in Belgium. Thirdly, the recovered economic value and avoided environmental impact (EI) of the analysed recycling system is assessed. Finally, the potential of urban mining for Belgium is forecasted. The analysis shows that while recycling performance for ferrous metals and aluminium are relatively high; there is substantial room to better close the material loops for precious metals (PM) and plastics. PMs and plastics account for 66 % of the economic value in LCD TVs and 57% of the EI. With the current, commonly applied recycling technology only one-third of the PM and housing plastics are recycled; meaning that for these materials, at a national level for Belgium, there is a potential for improvement that represents 3.3 million euros in 2016 and 6.8 million euros in 2025.

关键词: Recycling     Waste of electrical and electronic equipment (WEEE)     Material flow analysis     LCD TVs     Precious metals     Plastics    

Measurement and analysis of tip clearance unsteady flow spectrum in axial-flow fan rotor

LIU Bo, HOU Weimin, MA Changyou, WANG Yangang, ZHOU Qiang

《能源前沿(英文)》 2008年 第2卷 第4期   页码 448-452 doi: 10.1007/s11708-008-0088-0

摘要: The dynamic pressure measurement device and test technology are described in this study. The tip clearance unsteady flow development from the inlet to the outlet of an axial-flow rotor was revealed by analyzing pressure frequency spectrum acquired from measuring the unsteady pressure field of the tip endwall. The experiment provides test basis for thoroughly understanding the tip clearance unsteady flow and building interaction models of tip clearance flow and main flow.

关键词: development     endwall     unsteady pressure     pressure measurement     experiment    

Substance flow analysis for an urban drainage system of a representative hypothetical city in China

Hua BAI, Siyu ZENG, Xin DONG, Jining CHEN

《环境科学与工程前沿(英文)》 2013年 第7卷 第5期   页码 746-755 doi: 10.1007/s11783-013-0551-y

摘要: This paper discusses the use of substance flow analysis (SFA) as a tool to support quantified research on urban drainage systems. Based on the principle of mass balance, a static substance flow model is established to describe and examine the routes and intensities of water, chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) for a representative hypothetical city (RH city) in China, which is a devised and scaled city using statistical characteristics of urban circumstances at the national level. It is estimated that the annual flux of water, COD, TN and TP through the urban drainage system in 2010 was 55.1 million m , 16037.3 t, 1649.5 t and 209.7 t, respectively. The effluent of wastewater treatment plant (WWTP) was identified as the most important pathway for pollutant emissions, which contributed approximately 60% of COD, 65% of TN and 50% of TP to receiving water. During the wastewater treatment process, 1.0 million m , 7042.5 t, 584.2 t and 161.4 t of the four studied substances had been transmitted into sludge, meanwhile 3813.0 t of COD and 394.0 t of TN were converted and emitted to the atmosphere. Compared with the representative hypothetical city of 2000, urban population and the area of urban built districts had expanded by approximately 90% and 80% respectively during the decade, resulting in a more than threefold increase in the input of substances into the urban drainage system. Thanks to the development of urban drainage systems, the total loads of the city were maintained at a similar level.

关键词: substance flow analysis (SFA)     urban drainage system     representative hypothetical city (RH city)     water pollution control    

Vanadium metabolism investigation using substance flow and scenario analysis

Fangfang ZHANG, Huiquan LI, Bo CHEN, Xue GUAN, Yi ZHANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 256-266 doi: 10.1007/s11783-013-0585-1

摘要: Vanadium is a vital strategic resource, and vanadium metabolism is an important part of the national socio-economic system of China. This study conducts accounting and scenario analysis on the life cycle of vanadium metabolism in China. Based on the characteristics of vanadium life cycle and substance flow analysis (SFA) framework, we present a quantitative evaluation of a static anthropogenic vanadium life cycle for the year 2010. Results show that anthropogenic vanadium consumption, stocks, and new domestic scrap are at 98.2, 21.2, and 4.1 kt, respectively; new scrap is usually discarded. The overall utilization ratio of vanadium is 32.2%. A large amount of vanadium is stockpiled into tailings, debris, slags, and other spent solids. A scenario analysis was conducted to analyze the future developmental trend of vanadium metabolism in China based on the SFA framework and the qualitative analysis of technology advancement and socio-economic development. The baseline year was set as 2010. Several indicators were proposed to simulate different scenarios from 2010 to 2030. The scenario analysis indicates that the next 20 years is a critical period for the vanadium industry in China. This paper discusses relevant policies that contribute to the improvement of sustainable vanadium utilization in China.

关键词: metabolism     vanadium industry     substance flow analysis     scenario analysis    

Industrial solid waste flow analysis of eco-industrial parks: implications for sustainable waste management

Yongpeng Lü, Kai YANG, Yue CHE, Zhaoyi SHANG, Jun TAI, Yun JIAN

《环境科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 575-587 doi: 10.1007/s11783-011-0344-0

摘要: Sustainable waste management in the industrial ecology perspective brings enormous challenges to the existing methodology of waste analysis at the industrial park (IP) scale. In this study, a four-step method was proposed for industrial solid waste (ISW) flow analysis of eco-industrial parks (EIPs) and applied to two IPs in eastern China. According to a park-wide census of 619 industrial enterprises and 105 questionnaires by a survey from 2006 to 2008, the results indicated that: 1) at the enterprise scale, more than 60% of enterprises were small-ISW-generation enterprises which encountered great difficulties on effective waste management; 2) at the IP scale, though the two IPs have set up their own environmental management systems and passed the ISO 14001 certification, the efficiencies of the ISW management systems have yet to be improved in the industrial ecology perspective; and 3) at the regional scale, more than 97% of ISW flowed within the provincial region, indicating that the provincial governments prevented the wastes from flowing into their own “back yard”. Effective waste management should be placed in a broader perspective. Approaches to sustainable waste management may include wastes exchange, efficient waste and information flow, virtual EIP, waste minimization clubs and regionalization of waste management.

关键词: industrial solid waste     waste flow analysis     eco-industrial parks     sustainable waste management     “not in my back yard”    

标题 作者 时间 类型 操作

End-of-life batteries management and material flow analysis in South Korea

Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun

期刊论文

Sustainable design of sanitation system based on material and value flow analysis for urban slum in Indonesia

Ken USHIJIMA, Mitsuteru IRIE, Neni SINTAWARDANI, Jovita TRIASTUTI, Umi HAMIDAH, Tadaharu ISHIKAWA, Naoyuki FUNAMIZU

期刊论文

Sinks of steel in China–addition to in-use stock, export and loss

Hua GUO,Tianzhu ZHANG

期刊论文

The Building of Papermaking Enterprise’s Recycling Economy Evaluation Index System Based on Value FlowAnalysis

Zhi-fang Zhou,Jing Ou,Sha-sha Wang,Xiao-hong Chen

期刊论文

Win-Win: Anthropogenic circularity for metal criticality and carbon neutrality

期刊论文

Spatiotemporal evolution and driving factors for GHG emissions of aluminum industry in China

期刊论文

Clustering economic sectors in China on a life cycle basis to achieve environmental sustainability

Sai LIANG, Tianzhu ZHANG, Xiaoping JIA

期刊论文

物质流分析的跟踪观察法

陆钟武

期刊论文

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

期刊论文

Theoretical analysis and experimental investigation of valveless piezoelectric pump with unsymmetrical

ZHANG Jianhui, LU Jizhuang, XIA Qixiao, LI Hong

期刊论文

Improvement potential of today’s WEEE recycling performance: The case of LCD TVs in Belgium

Paul Vanegas, Jef R. Peeters, Dirk Cattrysse, Wim Dewulf, Joost R. Duflou

期刊论文

Measurement and analysis of tip clearance unsteady flow spectrum in axial-flow fan rotor

LIU Bo, HOU Weimin, MA Changyou, WANG Yangang, ZHOU Qiang

期刊论文

Substance flow analysis for an urban drainage system of a representative hypothetical city in China

Hua BAI, Siyu ZENG, Xin DONG, Jining CHEN

期刊论文

Vanadium metabolism investigation using substance flow and scenario analysis

Fangfang ZHANG, Huiquan LI, Bo CHEN, Xue GUAN, Yi ZHANG

期刊论文

Industrial solid waste flow analysis of eco-industrial parks: implications for sustainable waste management

Yongpeng Lü, Kai YANG, Yue CHE, Zhaoyi SHANG, Jun TAI, Yun JIAN

期刊论文